L-I-N-E-S LAB

Visit each station, in any order, with your group. Check in with the teacher to correct your work before beginning at another station.

L	I	N	E	S

L

1)

Given: $\mathbf{m} \perp \mathbf{\ell}$ and $\mathbf{p} \perp \mathbf{\ell}$

Prove: m || p

REASONS

STATEMENTS

 $m\perp \ell$ and $p\perp \ell$

- 2) Line ℓ is a transversal
- 3) $m \angle ADC = 90^{\circ}$ $m \angle BED = 90^{\circ}$
- 4) $\angle ADC \cong \angle BED$
- 5) $m \parallel p$

Theorem:

Given: $x \parallel z$ and $y \parallel z$, and t is a transversal to all 3 lines

Prove: $x \parallel y$

STATEMENTS	REASONS
1) $x \parallel_{\mathcal{Z}}$ and $y \parallel_{\mathcal{Z}}$, and t is a transversal	
2) $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 3$	
3) ∠1 ≅ ∠2	
4) x y	

Theorem:

Ν

Given: $m \angle 1 = m \angle 3$

 $p \parallel q$

Prove: $\ell \parallel m$

STATEMENTS

REASONS

1) _____

2) $\angle 1$ and $\angle 2$ are supplementary

3) $m \angle 1 + m \angle 2 = 180^{\circ}$

4) _____

5) $m \angle 2 + m \angle 3 = 180^{\circ}$

6) $\angle 2$ and $\angle 3$ are supplementary

7) _____

Given: $\angle 1 \cong \angle 2$ $\angle 3$ and \angle BCD are supplementary

Prove: ABCD is a parallelogram

STATEMENTS	REASONS
1) ∠1 ≅ ∠2 2) AD BC 3)	
4) $\overrightarrow{AB} \overrightarrow{DC}$	
5)	

S.

Given: $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$

Prove: MNPQ is a parallelogram

STATEMENTS	REASONS
1) ∠1 ≅ ∠2	
2) MQ NP	
3)	
4) MN QP	
5)	

**Additional Question: If $m \angle 1 = m \angle MPQ$, MNPQ would be a ______.