AP Calc AB		
Differential	Equations	Lab

Name:	
-------	--

Introduction: In this activity, you will be considering 6 differential equations that describe some <u>positive quantity</u> y. You will be matching from four sets of cards: differential equations, descriptions of the differential equation, slope fields, and descriptions of the solutions. In addition, you will complete some analysis questions related to each differential equation.

Directions:

- Complete the matching and record your answers in the chart below.
- Check your results of the matching with the teacher.
- Once your matching has been verified, complete the additional analysis questions.

dy dt	$\frac{dy}{dt}$ Description	Slope Field	Solution Description

$$\frac{dy}{dt}$$
 #1

$$\frac{dy}{dt} = 0.50y$$

$$\frac{dy}{dt}$$
 #2

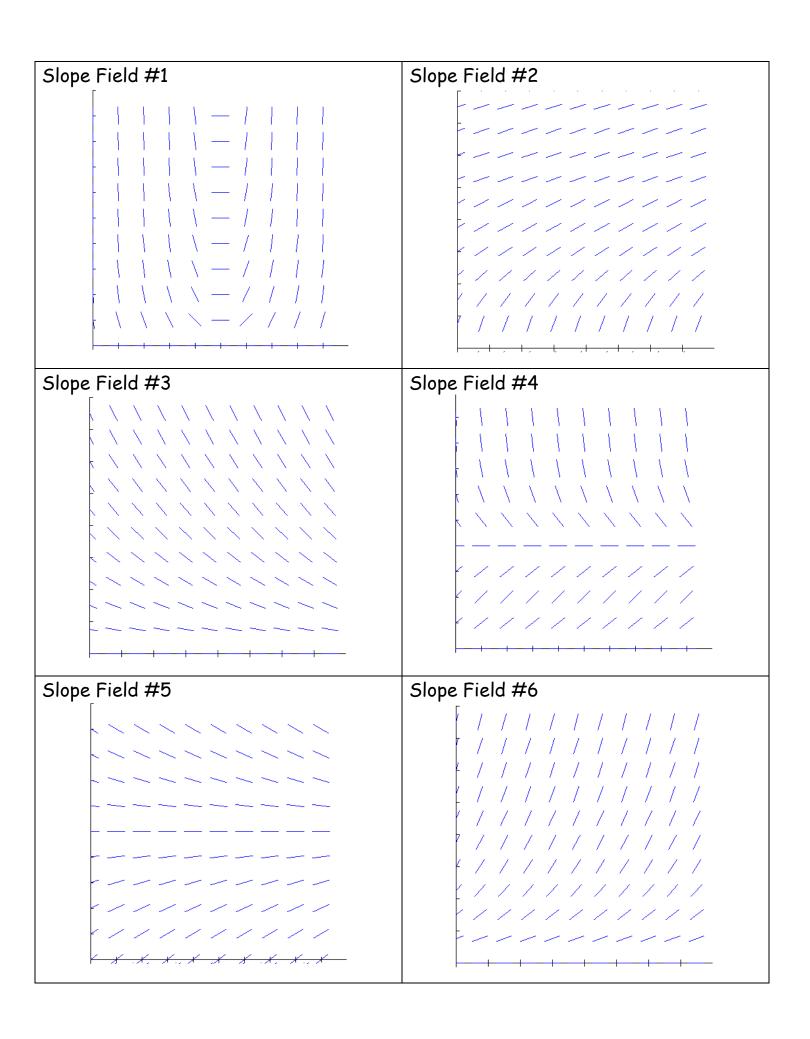
$$\frac{dy}{dt} = -0.25y$$

$$\frac{dy}{dt}$$
 #3

$$\frac{dy}{dt} = -0.15(y-5)$$

$$\frac{dy}{dt}$$
#4

$$\frac{dy}{dt} = \frac{2}{y}$$


$$\frac{dy}{dt}$$
 #5

$$\frac{dy}{dt} = y(t-5)$$

$$\frac{dy}{dt}$$
 #6

$$\frac{dy}{dt}=0.25y(4-y)$$

$\frac{dy}{dt}$ Description #1	$\frac{dy}{dt}$ Description #2	
y changes at a rate inversely proportional to the amount present at any time t	At any given time, y changes at a rate proportional to the difference between the amount present and 5	
dy/dt Description #3	$\frac{dy}{dt}$ Description #4	
dt	dt	
y increases at a rate proportional to the amount present at any time t	At any given time, y changes at a rate proportional to the product of the amount present and 5 less than t.	
$\frac{dy}{dt}$ Description #5	$\frac{dy}{dt}$ Description #6	
At any time t, y changes at a rate proportional to the product of the amount present and the difference between 4 and the amount present	y decreases at a rate proportional to the amount present at any time t	

Solution Description #1	Solution Description #2
The solution curves are always concave down.	For any particular solution, $\lim_{t\to\infty} y(t)=4$
Solution Description #3	Solution Description #4
The solution curves have horizontal tangents at $t = 5$.	For any particular solution, $\lim_{t\to\infty} y(t) = 0$
Solution Description #5	Solution Description #6
The solution curves represent exponential growth.	Each solution curve has a horizontal asymptote at $y = 5$.

Differential Equations Lab Analysis Questions

1.) For the differential equation $\frac{dy}{dt}$ #1, suppose the initial condition is y(0) = 10. How long until y = 100?

2.) For the differential equation $\frac{dy}{dt}$ #2, find $\frac{d^2y}{dt^2}$ in terms of y. What does $\frac{d^2y}{dt^2}$ tell you about the solution curves for y > 0?

3.) For the differential equation $\frac{dy}{dt}$ #3, use separation of variables to find the particular solution y = y(t) with the initial condition y(0) = 2.

4.) For the differential equation $\frac{dy}{dt}$ #4, compute $\frac{d^2y}{dt^2}$ in terms of y and use this justify why the solution curves are always concave down.

5.) For the differential equation $\frac{dy}{dt}$ #5, suppose that a particular solution y = y(t) passes through the point (1, 2). Use the line tangent to the graph of y = y(t) at t = 1 to estimate y(1.1).

6.) For the differential equation $\frac{dy}{dt}$ #6, algebraically show that the function $y(t) = \frac{4}{1 + e^{-t}}$ satisfies the differential equation.

Differential Equations Matching Teacher Answer Key

dy dt	$\frac{dy}{dt}$ Description	Slope Field	Solution Description
1	3	6	5
2	6	3	4
3	2	5	6
4	1	2	1
5	4	1	3
6	5	4	2