Row by Row: Real Number System

Student A	Student B
If the square root of a number is an integer, then number is called a perfect square. One example of a perfect square is 50 OR 16	$\sqrt{64}+\sqrt{9}+\sqrt{1}$
Find the square root. $\sqrt{144}$	Emily is thinking of an even number. When it is divided by 4 it is an odd number. Her number squared is greater than 100, but less than 200. What is her number?
$\sqrt{120}, \sqrt{24}, \sqrt{45}$, all belong to which number set.	A decimal that never terminates, and never repeats, represents an irrational number. The decimal $\sqrt{2}$, never terminates or repeats. Therefore $\sqrt{2}$, is a(n) \qquad number.
Identify the best number set in which -8 belongs.	The square root of a perfect square is an
0.222222 is an example of a \qquad decimal.	Every rational number can be represented either by a terminating decimal or by a
Since 2 is not a perfect square, $\sqrt{2}$ is not an integer. The square root of 2 is a number which, when squared, equals exactly \qquad	Find the sum. $\frac{7}{8}+1.125$
Find the sum. $-0.35+\left(-\frac{7}{20}\right)$	Which number is greater? $-0.7 \text { or }-\frac{7}{8}$
Find the difference. $-7 \frac{3}{11}-(-8)$	Write 0.7272727272... as a fraction.

Student A	Student B	Answer Sheet
If the square root of a number is an integer, then number is called a perfect square. One example of a perfect square is $50 \quad \text { OR } 16$	$\sqrt{64}+\sqrt{9}+\sqrt{1}$	16
Find the square root. $\sqrt{144}$	Emily is thinking of an even number. When it is divided by 4 it is an odd number. Her number squared is greater than 100, but less than 200 . What is her number?	12
$\sqrt{120}, \sqrt{24}, \sqrt{45}$, all belong to which number set.	A decimal that never terminates, and never repeats, represents an irrational number. The decimal $\sqrt{2}$, never terminates or repeats. Therefore $\sqrt{2}$, is a(n) \qquad number.	Irrational Numbers
Identify the best number set in which -8 belongs.	The square root of a perfect square is an	integer
0.222222 is an example of a \qquad decimal.	Every rational number can be represented either by a terminating decimal or by a \qquad	Repeating decimal
Since 2 is not a perfect square, $\sqrt{2}$ is not an integer. The square root of 2 is a number which, when squared, equals exactly \qquad	Find the sum. $\frac{7}{8}+1.125$	2
Find the sum. $-0.35+\left(-\frac{7}{20}\right)$	Which number is greater? $-0.7 \text { or }-\frac{7}{8}$	-0.7
Find the difference. $-7 \frac{3}{11}-(-8)$	Write 0.7272727272... as a fraction.	$\frac{8}{11}$

