Name(s) \qquad

S-O-L-V-E LAB

Visit each station, in any order, with your partner(s). You may use a calculator to help you work on each.

Check in with the teacher to correct your work before beginning at another station.

S	What is the units digit of 3^{107} ?
0	What is the smallest \underline{n} for which $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}>3$?
L	Find the smallest positive integer \underline{n} so that $\mathrm{n}^{2}-26 n+30$ is at least 1000 .
V	What is the smallest positive integer that you could multiply 180 by, to get an integer that is a perfect cube.
E	Info Dr. Morris placed one bacterium in a closed container on June 1. The number of bacteria doubled every day. The container became full on June 20. Questions Question 1: How many bacteria were in the container when full? Question 2: On what date was the container one-fourth full?

STATION S

What is the units digit

$$
\text { of } 3^{107} ?
$$

STATION O

What is the smallest \underline{n}

 for which$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}>3 ?
$$

STATION L

Find the smallest positive integer \underline{n} so
that $n^{2}-26 n+30$ is
at least 1000.

STATION V

What is the smallest
positive integer that you could multiply 180 by, to
get an integer that is a perfect cube.

STATION E Info

Dr. Morris placed one bacterium in a closed container on June 1. The number of bacteria doubled every day. The container became full on June 20.

STATION E Questions

Question 1: How many bacteria were in the container when full?

Question 2: On what date was the container one-fourth full?

