F

1. Write the equation of a parabola whose graph is shown.

2. Sketch a graph of the equation $f(x)=x^{2}-6 x+8$
Identify its vertex, intercepts and axis of symmetry.

U

$$
\begin{aligned}
& \text { The height y (in feet) of a punted football is } \\
& \qquad y=-\frac{16}{2025} x^{2}+\frac{9}{5} x+1.5 \\
& \text { where } x \text { is the horizontal distance in feet } \\
& \text { from the point at which the ball is punted. } \\
& \text { a) How high was the ball when it was } \\
& \text { punted? } \\
& \text { b) What is the maximum height of the ball? } \\
& \text { c) How far was the ball punted? }
\end{aligned}
$$

C

$$
\begin{aligned}
& \text { Divide. } \\
& \text { 1) }\left(x^{4}-3 x^{3}-2 x+1\right) \div\left(x^{2}-2 x+3\right) \\
& \text { 2) }\left(x^{4}-3 x^{3}-2 x+1\right) \div(x+3) \\
& \text { Graph the rational function: } \\
& h(x)=\frac{x^{2}-2 x-8}{x^{2}-9} \\
& \text { Using the steps described in class. }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{N}_{2} \\
\text { Solve: } 3 x^{3}-4 x^{2}-12 x>-16
\end{gathered}
$$

T

Find all the zeros (real and imaginary) of the function

$$
g(x)=x^{4}+4 x^{3}-8 x^{2}+16 x-48
$$

Use the graphing calculator and synthetic division to help you factor.

1) Write $(4-2 i)+(3-i)$ in standard form.
2) Write (4-2i)-(3-i) in standard form.
3) Write $(4-2 i)(3-i)$ in standard form.
4) Write $(4-2 \mathrm{i}) /(3-\mathrm{i})$ in standard form. 5) What is the conjugate of 4-2i?

FUNCTION STATIONS RECORDING SHEET

FUNCTION STATIONS RECORDING SHEET

F	F
U	U
N_{1}	N_{1}
C	C
T	T
I	I
0	0
N_{2}	N_{2}

