Station 1: Ordering Scientific Notation
Write each of the following numbers in scientific notation. Then, organize them in value order, from least to greatest.
$32.8 \cdot 10^{8}$
$83.4 \cdot 10^{-4}$
$4.7 \cdot 10^{-3}$
$8.34 \cdot 10^{-2}$
$512.9 \cdot 10^{6}$
$0.93 \cdot 10^{-4}$

$$
0.026 \cdot 10^{5} \quad 7.5 \cdot 10^{3}
$$

Station 1 Worksheet:

Original Number	Standard Notation	Scientific Notation	Value Order

Station 2: Exponent Operations
Use any combination of the exponential expressions below to demonstrate each of the PRODUCT and QUOTIENT laws of exponents. Create and simplify at least 10 problems.
x^{2}
y^{3}
x^{5}
$3 x^{-4}$
$6 y^{-4}$
y^{4}
$2 y^{3}$
$4 x^{6}$
$\left(x^{3}\right)^{4}$
$12 x^{4}$
x^{-6}
y^{-7}
$\left(y^{-2}\right)^{-3}$

Station 2 Worksheet:

Problem		Simplify	
1.			Which Law?
2			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			
11.			
12.			
13.			

Station 3: Show or Explain!

1. Which is greater, $2.3 \cdot 10^{32}$ or $3.2 \cdot 10^{23}$? EXPLAIN!
2. For the following two expressions, have \boldsymbol{a} be a positive number and \boldsymbol{b} and \boldsymbol{c} be positive integers:
a. SHOW that $\left(a^{b}\right)^{-c}=a^{-b c}$
b. SHOW that $\left(a^{-b}\right)^{c}=a^{-b c}$
3. Suppose that \boldsymbol{y} is a positive integer:
a. Explain what x^{y} means.
b. Explain how x^{y} relates to x^{-y}

Station 3 Answer Sheet:

1.	Answer:	Explanation:
2.a.	Show your work:	
2.b.	Show your work:	
3.a.	Explain:	
3.b.	Explain:	

Station 4: Comparing Functions

Complete the table of values to compare the expressions: $x, 3 x, 3^{x}, x^{3}$

Value of $\mathrm{x}=$		0	1	2	3	4	5
Function 1	x						
Function 2	$3 x$						
Function 3	3^{x}						
Function 4	x^{3}						

1. As x increases in value from 0 to 5 , which expression's values increase most quickly?
2. For the function of 3^{x}, how do you get from one value to the next?
3. Use your table of values to graph the points for each function, on one set of axes. Use a different color for each function.

