Name(s)

D-I-V-I-S-I-B-I-L-E LAB

Visit each station, in any order, with your partner(s). You may NOT use a calculator or use division to help you work on the problems.

D	Which number is divisible by 3? 61,333 or 62,100 Why?		
\mathbf{I}^{1}	Which number is divisible by 4? 1,400,426 or 1,400,652 Why?		
V	Which number is divisible by 6? 400,426 or 400,662 Why?		
\mathbf{l}^{2}	Which number is divisible by 9? 123,456,789 or 177,188,199 Why?		
S	Which number is divisible by 9 and 2? 33,015 10,098 35,540 Why?		
\mathbf{l}^{3}	Which number is divisible by 6? 1,936 4,762 2,058 Why?		
B	Which number is divisible by 3? 888, 777, 666, 555, 444 Why?		
E	Which number is divisible by 3? 81, 72, 63, 54 Why?		
L Choose one and explain how the rule proves the divisibility.			
$147, ~ 203, ~ 287, ~ 1,008$		\quad	Challenge: All of the following numbers are divisible by 7.
:---			

DIVISIBILITY LAB

Answer Key

STATION D

A number is divisible

> by 3 if the sum of its
> digits is divisible by 3 .

Example: 11,301 is divisible by
3 because $1+1+3+0+1=6$, and 6

$$
\text { is divisible by } 3 \text {. }
$$

STATION I ${ }^{1}$

A number is divisible by
4 if the tens and ones
digits form a number
that is divisible by 4.
(Do not add them together.)
A quick way to check is to divide the number by 2 and then divide the result by 2 .
(That is the same as dividing by 4.)

STATION V

A number is divisible by
6 if it is divisible by
both 2 and 3 .
The number must be
even, and the sum of
the digits must be
divisible by 3.

STATION I

A number is divisible

> by 9 if the sum of its
> digits is divisible by 9 .

Example: 51,345 is divisible by
9 because $5+1+3+4+5=18$, and

$$
18 \text { is divisible by } 9 .
$$

STATION \underline{S}

A number is divisible
by 9 if the sum of its
digits is divisible by 9 .

Example: 51,345 is divisible by
9 because $5+1+3+4+5=18$, and

$$
18 \text { is divisible by } 9 .
$$

STATION I ${ }^{3}$

A number is divisible by
6 if it is divisible by
both 2 and 3 .
The number must be
even, and the sum of
the digits must be
divisible by 3.

STATION B

A number is divisible

> by 3 if the sum of its
> digits is divisible by 3.

Example: 11,301 is divisible by
3 because $1+1+3+0+1=6$, and 6

$$
\text { is divisible by } 3 \text {. }
$$

STATION L

A number is divisible

> by 3 if the sum of its
> digits is divisible by 3.

Example: 11,301 is divisible by
3 because $1+1+3+0+1=6$, and 6

$$
\text { is divisible by } 3 \text {. }
$$

STATION E

A number is divisible by 7 if when you take the last digit, double it and subtract from remaining digits, your answer is 0,7 , or can

$$
\text { be divided by } 7 \text {. }
$$

