Volume Match Lab

Match each <u>Graph of Bounded Region</u> it to its <u>Resulting Solid Figure</u> and <u>Equation(s)</u>, <u>Boundaries & axis of Rotation</u>. Then, write the integral needed to find the volume of the resulting solid. Find the volume, where possible.

Graph of Bounded Region	Resulting Solid Figure	Equation(s), Boundaries, & axis of Rotation	Integral Expression for Finding Volume	Volume (where possible)
1				
2				
3				
4				
5				
6				

Volume Match Lab 2007 Created by Anne Chay—Lawrence, MA

The region described below is to be rotated about the y-axis.	The region described below is to be rotated about the x-axis.		
It is bounded by:	It is bounded by:		
$y = x^2 + 1$, $y = 0$	$y = \sqrt{\sin x}$, $y = 0$		
x = 0 and $x = 1$.	$x = 0$ and $x = \pi$.		
Equations, Boundaries, Rotation 1	Equations, Boundaries, Rotation 2		
The region described below is to be rotated about the $y = 1$.	The region described below is to be rotated about the x-axis.		
It is bounded by:	It is bounded by:		
$y = 2 - x^2$ and $y = 1$	y = R(x), $y = r(x)$		
	x = a and $x = b$.		
Equations, Boundaries, Rotation 3	Equations, Boundaries, Rotation 4		
Equations, Boundaries, Rotation 3	Equations, Boundaries, Rotation 4		
Equations, Boundaries, Rotation 3 The region described below is to be rotated about the x-axis.	Equations, Boundaries, Rotation 4 The region described below is to be rotated about the x-axis.		
Equations, Boundaries, Rotation 3 The region described below is to be rotated about the x-axis. It is bounded by:	Equations, Boundaries, Rotation 4 The region described below is to be rotated about the x-axis. It is bounded by:		
Equations, Boundaries, Rotation 3 The region described below is to be rotated about the x-axis. It is bounded by: $y = \sqrt{25 - x^2}$, $y = 3$	Equations, Boundaries, Rotation 4 The region described below is to be rotated about the x-axis. It is bounded by: y = R(x), $y = 0$		
Equations, Boundaries, Rotation 3 The region described below is to be rotated about the x-axis. It is bounded by: $y = \sqrt{25 - x^2}$, $y = 3$ x = -4 and $x = 4$.	Equations, Boundaries, Rotation 4 The region described below is to be rotated about the x-axis. It is bounded by: y = R(x), $y = 0x = a$ and $x = b$.		

Volume Match Lab

Answer Sheet

Graph of Bounded Region	Resulting Solid Figure	Equation(s), Boundaries, & axis of Rotation	Integral Expression for Finding Volume	Volume (where possible)
1	6	2	$\pi \int_0^\pi \left(\sqrt{\sin x}\right)^2 dx$	₌ 2π ≈ 6.283
2	3	5	$\pi \int_{-4}^{4} \left(\left(\sqrt{25 - x^2} \right)^2 - 3^2 \right) dx$	$= \frac{256}{3}\pi$ ≈ 268.083
3	2	4	$\pi \int_{a}^{b} (R(x))^{2} - r(x)^{2} dx$	
4	1	3	$\pi \int_{-1}^{1} (2 - x^2 - 1)^2 dx$	$= \frac{16}{15}\pi$ ≈ 3.351
5	4	6	$\pi \int_{a}^{b} (R(x)^{2}) dx$	
6	5	1	Washers: $\pi \int_{0}^{2} (1^{2}) dy - \pi \int_{1}^{2} (y - 1) dy$ Shells: $2 = \int_{0}^{1} y(y^{2} + 1) dy$	$= 2\pi - \frac{1}{2}\pi$ ≈ 4.712
			$2\pi \int_0^\infty x(x + 1) dx$	