Volume Match Lab

Match each Graph of Bounded Region it to its Resulting Solid Figure and Equation(s), Boundaries \& axis of Rotation. Then, write the integral needed to find the volume of the resulting solid. Find the volume, where possible.

Graph of Bounded Region	Resulting Solid Figure	Equation(s), Boundaries, \& axis of Rotation	Integral Expression for Finding Volume	Volume (where possible)
1				
2				
3				
4				
5				
6				

Volume Match Lab Created by Anne Chay-Lawrence, MA 2007

The region described below is to be rotated about the y-axis.

It is bounded by:

$$
\begin{array}{ll}
y=x^{2}+1, & y=0 \\
x=0 \text { and } & x=1
\end{array}
$$

Equations, Boundaries, Rotation 1

The region described below is to be rotated about the x -axis.

It is bounded by:

$$
\begin{aligned}
& y=\sqrt{\sin x}, \quad y=0 \\
& x=0 \quad \text { and } \quad x=\pi
\end{aligned}
$$

Equations, Boundaries, Rotation 2

The region described below is to be rotated about the $\mathrm{y}=1$.

It is bounded by:

$$
y=2-x^{2} \quad \text { and } \quad y=1
$$

Equations, Boundaries, Rotation 3

The region described below is to be rotated about the x-axis.

It is bounded by:

$$
\begin{aligned}
& y=\sqrt{25-x^{2}}, \quad y=3 \\
& x=-4 \quad \text { and } \quad x=4
\end{aligned}
$$

Equations, Boundaries, Rotation 5

The region described below is to be rotated about the x-axis.

It is bounded by:

$$
\begin{array}{ll}
y=R(x), & y=r(x) \\
x=a \quad \text { and } & x=b
\end{array}
$$

Equations, Boundaries, Rotation 4

The region described below is to be rotated about the x-axis.

It is bounded by:

$$
\begin{aligned}
& y=R(x), \quad y=0 \\
& x=a \quad \text { and } \quad x=b
\end{aligned}
$$

Equations, Boundaries, Rotation 6

Volume Match Lab
Answer Sheet

Graph of Bounded Region	Resulting Solid Figure	Equation(s), Boundaries \& axis of Rotation	Integral Expression for Finding Volume	Volume (where possible)
1	6	2	$\pi \int_{0}^{\pi}(\sqrt{\sin x})^{2} d x$	$\begin{gathered} =2 \pi \\ \approx 6.283 \end{gathered}$
2	3	5	$\pi \int_{-4}^{4}\left(\left(\sqrt{25-x^{2}}\right)^{2}-3^{2}\right) d x$	$\begin{aligned} & =\frac{256}{3} \pi \\ & \approx 268.083 \end{aligned}$
3	2	4	$\left.\pi \int_{a}^{b}(R(x))^{2}-r(x)^{2}\right) d x$	
4	1	3	$\pi \int_{-1}^{1}\left(2-x^{2}-1\right)^{2} d x$	$\begin{aligned} & =\frac{16}{15} \pi \\ & \approx 3.351 \end{aligned}$
5	4	6	$\pi \int_{a}^{b}\left(R(x)^{2}\right) d x$	
6	5	1	Wa shers: $\pi \int_{0}^{2}\left(1^{2}\right) d y-\pi \int_{1}^{2}(y-1) d y$ Shells: $2 \pi \int_{0}^{1} x\left(x^{2}+1\right) d x$	$\begin{aligned} & =2 \pi-\frac{1}{2} \pi \\ & \approx 4.712 \end{aligned}$

