It's a Match Up
Each of the given Function Graphs (G1-G10), has a set of matching cards including:

- Equation (E1-E10)
- Description (D1-D10)
- First Derivative Graph (dy/dx 1-dy/dx 10)
- Second Derivative Graph ( $\left.d^{2} y / d x^{2} 1-d^{2} y / d x^{2} 10\right)$

Complete the table to indicate the matches for the sets of cards given.

| Function Graph | Equation | Description | First Derivative | Second Derivative |
| :--- | :--- | :--- | :--- | :--- |
| Graph | Graph |  |  |  |
| G1 |  |  |  |  |
| G2 |  |  |  |  |
| G3 |  |  |  |  |
| G4 |  |  |  |  |
| G5 |  |  |  |  |
| G6 |  |  |  |  |
| G7 |  |  |  |  |
| G8 |  |  |  |  |
| G9 |  |  |  |  |
| G10 |  |  |  |  |


| Equation E1 $f(x)=e^{-x^{2}}$ | Equation $f(x)=\ln (x)$ |
| :---: | :---: |
| Equation $f(x)=x^{2}$ | Equation $f(x)=\frac{1}{x^{2}}$ |
| Equation <br> E5 $f(x)=\frac{x\left(x^{2}-16\right)(x+1)(x-3)}{-3}$ | Equation $f(x)=\left\|x^{2}-2 x\right\|$ |
| Equation $f(x)=\frac{(x-1)^{2}(x+2)(x-3)}{2}$ | Equation $f(x)=.5(x+3)(2 x-5)(x-5)$ |
| Equation $f(x)=\sin (x)$ | Equation $f(x)=2^{-x}$ |


| Description <br> D1 <br> The function is periodic with domain all real numbers and range [ -1, 1 ]. | Description D2 <br> The graph of the function has three zeros, two relative minima and one relative maximum. It is differentiable everywhere. |
| :---: | :---: |
| Description <br> D3 <br> The graph of the function has one absolute minimum and no points of inflection. | Description <br> D4 <br> The graph of the function has three zeros, one maximum, one minimum, and one point of inflection. |
| Description <br> D5 <br> The graph of the function has one absolute maximum and the $x$-axis is an asymptote. | Description <br> D6 <br> The graph of the function is always increasing and has the $y$-axis as an asymptote. |
| Description D7 <br> The graph of the function has two relative maxima and two relative minima. | Description D8 <br> The graph of the function is always concave up and $\lim _{x \rightarrow-\infty} f(x)=+\infty \text { and } \lim _{x \rightarrow+\infty} f(x)=0$ |
| Description D9 <br> The graph of the function has one relative maximum and two relative minima. | Description D10 <br> The graph of the function has the $x$-axis and $y$-axis as it horizontal and vertical asymptotes, respectively. |

Function Graph
First Derivative Graph


It's a Match Up Answer Sheet

## AP Calculus

| Function Graph | Equation | Description | First Derivative Graph | Second Derivative <br> Graph |
| :---: | :---: | :---: | :---: | :---: |
| G1 | E10 | D8 | dy/dx 5 | $d^{2} y / d x^{2} 9$ |
| G2 | E1 | D5 | $d y / d x 6$ | $d^{2} y / d x^{2} 3$ |
| G3 | E3 | D3 | $d y / d x 2$ | $d^{2} y / d x^{2} \quad 10$ |
| G4 | E2 | D6 | $d y / d x 7$ | $d^{2} y / d x^{2} \quad 4$ |
| G5 | E5 | D7 | $d y / d x 9$ | $d^{2} y / d x^{2} 6$ |
| G6 | E4 | D10 | $d y / d x 8$ | $d^{2} y / d x^{2} 7$ |
| G7 | E6 | D9 | $d y / d x 3$ | $d^{2} y / d x^{2} 1$ |
| G8 | E9 | D1 | dy/dx 10 | $d^{2} y / d x^{2} 5$ |
| G9 | E7 | D2 | dy/dx 4 | $d^{2} y / d x^{2} 2$ |
| G10 | E8 | D4 | $d y / d x 1$ | $d^{2} y / d x^{2} 8$ |

Matching Lab based on a lesson by Mr. Larry Peterson, Davis School District, Farmington, Utah.

It has been modified and is being used by the AP Calculus Network at the Science Resource Center at UMASS Medical School with permission. September 2007.

