It's a Match Up

AP Calculus

Each of the given Function Graphs (G1—G10), has a set of matching cards including:

- Equation (E1—E10)
- Description (D1—D10)
- First Derivative Graph (dy/dx 1—dy/dx 10)
- Second Derivative Graph $(d^2y/dx^2 \ 1 d^2y/dx^2 \ 10)$

Complete the table to indicate the matches for the sets of cards given.

Function Graph	Equation	Description	First Derivative	Second Derivative
			Graph	Graph
G1				
G2				
G3				
G4				
G5				
G6				
G7				
G8				
G9				
G10				

Equation E1 $f(x) = e^{-x^2}$	Equation E2 $f(x) = \ln(x)$
Equation E3 $f(x) = x^2$	Equation E4 $f(x) = \frac{1}{x^2}$
Equation E5 $f(x) = \frac{x(x^2 - 16)(x + 1)(x - 3)}{-3}$	Equation E6 $f(x) = x^2 - 2x $
Equation E7 $f(x) = \frac{(x-1)^2 (x+2) (x-3)}{2}$	Equation E8 f(x) = .5(x+3)(2x-5)(x-5)
Equation E9 $f(x) = \sin(x)$	Equation E10 $f(x) = 2^{-x}$

Description	D1	Description	D2	
The function is periodic with doma numbers and range [-1, 1].	iin all real	The graph of the function has three zeros, two relative minima and one relative maximum. It is differentiable everywhere.		
Description	D3	Description	D4	
The graph of the function has one minimum and no points of inflection		The graph of the function has three zeros, one maximum, one minimum, and one point of inflection.		
Description	D5	Description	D6	
The graph of the function has one maximum and the x-axis is an asyn		The graph of the function is always increasing and has the y-axis as an asymptote.		
Description	D7	Description	D8	
The graph of the function has two maxima and two relative minima.	o relative	The graph of the function is always concave up and $\lim_{x \to -\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = 0$		
Description	D9	Description	D10	
The graph of the function has one relative maximum and two relative minima.		The graph of the function has the x-axis and y-axis as it horizontal and vertical asymptotes, respectively.		

It's a Match Up Answer Sheet

AP Calculus

Function Graph	Equation	Description	First Derivative	Second Derivative
			Graph	Graph
G1	E10	D8	dy/dx 5	d^2y/dx^2 9
G2	E1	D5	dy/dx 6	d^2y/dx^2 3
G3	E3	D3	dy/dx 2	d^2y/dx^2 10
G4	E2	D6	dy/dx 7	d^2y/dx^2 4
G5	E5	D7	dy/dx 9	d^2y/dx^2 6
G6	E4	D10	dy/dx 8	d^2y/dx^2 7
G7	E6	D9	dy/dx 3	d^2y/dx^2 1
G8	E9	D1	dy/dx 10	d^2y/dx^2 5
G9	E7	D2	dy/dx 4	d^2y/dx^2 2
G10	E8	D4	dy/dx 1	d²y/dx² 8

Matching Lab based on a lesson by Mr. Larry Peterson, Davis School District, Farmington, Utah.

It has been modified and is being used by the AP Calculus Network at the Science Resource Center at UMASS Medical School with permission. September 2007.

