$\qquad$

| Verbal | Solve Differential Equation |
| :---: | :---: |
| At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function $W$ models the total amount of solid waste stored at the landfill. Planners estimate that $W$ will satisfy the differential equation $d W / d t=(1 / 25)(W-300)$ <br> for the next 20 years. $W$ is measured in tons, and $t$ is measured in years from the start of 2010. | Find the particular solution $W=W(t)$ to the given differential equation $\mathrm{dW} / \mathrm{d}+$ with initial condition $W(0)=1400$. |
| Analysis | Slope Field |
| 1. 1. Use the line tangent to the graph of $W$ at $t=0$ to estimate the amount of waste the landfill contains at the end of first three months of $2010\left(t=\frac{1}{4}\right)$. <br> 2. Find $\frac{d^{2} W}{d t^{2}}$ in terms of $W$. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer to Question 1 is an underestimate or overestimate of the amount of solid waste that the landfill contains at $t=\frac{1}{4}$. | This is the graph of the slope field for the differential equation $\mathrm{dW} / \mathrm{d}$. <br> Sketch your particular solution for the given initial condition on this slope field. |
|  |  |

