AP Calc AB Differential Equations LINK

Differential Equations LINK	
Verbal	Solve Differential Equation
At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation	Find the particular solution $W = W(t)$ to the given differential equation dW/dt with initial condition W(0) = 1400.
dW/dt = (1/25)(W - 300)	
for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.	
Analyzia	Clana Field
Analysis	Slope Field
1. 1. Use the line tangent to the graph of Wat	This is the graph of the slope field for the
t = 0 to estimate the amount of waste the	differential equation dW/dt.
landfill contains at the end of first three	Sketch your particular solution for the given
months of 2010 ($t = \frac{1}{4}$).	initial condition on this slope field. W(t)
4	vv (1) • • ₃₁₀₀ ^T ^v · · · · · · · · · · · · · · · · · · ·
2. Find $\frac{d^2 W}{dt^2}$ in terms of W. Use $\frac{d^2 W}{dt^2}$ to	
2. Find $\frac{dt^2}{dt^2}$ in terms of W. Use $\frac{dt^2}{dt^2}$ to	
determine whether your answer to Question	
1 is an underestimate or overestimate of the	
amount of solid waste that the landfill	
contains at $t = \frac{1}{4}$.	
4	
	0 2.5 5 7.5 10 12.5 15 17.5 20 T
	Adapted from 2011 AB/BC # 5