Connecting what we know about Area

Link 1: Different ways to find Area

a. Partition this shape into 4 MRAM subintervals, compute the area between the shape and the x-axis without a calculator.
a. Express the area as an integral.
b. Express in calculator notation what you would use to solve this integral.
c. Solve this integral using the calculator
d. Based on all of your answers, what can you surmise about the different ways to calculate area?

Connecting what we know about Area

Link 2: Discontinuous functions and Area

Equation	Geometric		
$\qquad f(x)=\frac{\|x\|}{x}$	Using what you know about this shape and geometry, find the area between the shape and the x-axis. Show all work.		
Draw a graph in a $[-1,2]$ by $[-2,2]$ window			
below.		\quad	Dunction:
:---			
Definite Integral			

a. Express the area between the shape and the x-axis using an integral(s).
b. Express in calculator notation what you would use to solve this integral.
c. Evaluate this integral using the calculator
a. Does your geometric answer match your answer calculated by the graphing calculator?
b. Does a different answer other than the one you calculated make more sense?
c. Make a conjecture about the area of this discontinuous shape.

Connecting what we know about Area

Link 3: Discontinuous functions and Area

Equation	Geometric
Given the function: $f(x)=\frac{x^{2}-4}{x-2}$ Draw a graph in a $[0,3]$ by $[0,6]$ window below. Do you recognize the shapes? If so, what observations can you make about it?	Using what you know about this shape and geometry, find the area between the shape and the x-axis. Show all work.
Definite Integral	Analysis
a. Express the area as an integral. b. Express in calculator notation what you would use to solve this integral. c. Solve this integral using the calculator	a. Does this graph have a discontinuity? If so, what kind of discontinuity? b. Does the discontinuity affect the area? c. Make a conjecture about the area of this discontinuous shape.

Connecting what we know about Area

Extension:

1. Use Areas to show that $\int_{0}^{5} \operatorname{int}(x) d x=10$ and confirm your answer with the calculator.
2. Use Areas to show that $\int_{-4}^{6} \operatorname{int}(2 x) d x=47$ and confirm your answer with the calculator.
