Symbolic	Graph
Given the function: $g(x)=\frac{3 \cdot x+5}{5 \cdot x-3}$ Determine $g^{\prime}(x)=$	
Table	Analysis
x $g(x)$ $g^{\prime}(x)$ -5 -4 -3 -2 -1 0 1 2 3 4 5	1. Determine the domain and range of the function $g(x)$. 2. Determine the zeros of $g(x)$. 3. Where is the function $g(x)$ differentiable? 4. Determine $\begin{aligned} & \lim _{x \rightarrow \infty}(g(x)) \\ & \lim _{x \rightarrow(-\infty)}(g(x)) \end{aligned}$ 5. Graph $g^{\prime}(x)$ on the axes above. 6. Determine the equation of the tangent line of $g(x)$ at the point where the slope is -34 . 7. When is $g^{\prime}(x)=0$? When is $g^{\prime}(x)>0$? When is $g^{\prime}(x)<0$? 8. At what point(s), if any, are the tangents to the graph of $g(x)$ horizontal?

