\qquad

Binary Search Trees

Directions: You are given a stack of cards, each card contains a number and a word. Insert the cards into a binary tree, in the order they are given, using the number as the sort key. Then read from your binary tree (in-order traversal), and write the words corresponding to each node in the tree. You may use scrap paper, but put your final tree in the space below.

\qquad

Binary Search Trees

Directions: You are given a stack of cards, each card contains a number and a word. Insert the cards into a binary tree, in the order they are given, using the number as the sort key. Then read from your binary tree (in-order traversal), and write the words corresponding to each node in the tree. You may use scrap paper, but put your final tree in the space below.

		Binary Search Tree:
96		
150	terms	
105		
	able	
99	a	
98	read	
60	be	
205	a	
210	binary	
200	from	
50	must	
40	you	
220	tree	
100	list	In-order Traversal

\qquad

Binary Search Trees

Directions: You are given a stack of cards, each card contains a number and a word. Insert the cards into a binary tree, in the order they are given, using the number as the sort key. Then read from your binary tree (in-order traversal), and write the words corresponding to each node in the tree. You may use scrap paper, but put your final tree in the space below.

	terms	Binary Search Tree:
220	tree	
	to	
105	of	
99	a	
205	a	
	able	
50	must	
60	be	
98	read	
200	from	
210	binary	
40	you	
100	list	
		In-order Traversal

\qquad

Binary Search Trees

Directions: You are given a stack of cards, each card contains a number and a word. Insert the cards into a binary tree, in the order they are given, using the number as the sort key. Then read from your binary tree (in-order traversal), and write the words corresponding to each node in the tree. You may use scrap paper, but put your final tree in the space below.

Binary Search Tree:

In-order Traversal

